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a  b  s  t  r  a  c  t

Transition  region-based  thresholding  is  a  newly  developed  image  binarization  technique.  Transition
region  descriptor  plays  a  key  role  in  the  process,  which  greatly  affects  accuracy  of transition  region  extrac-
tion and  subsequent  thresholding.  Local  entropy  (LE),  a  classic  descriptor,  considers  only  frequency  of
gray  level  changes,  easily  causing  those  non-transition  regions  with  frequent  yet  slight  gray  level  changes
to be misclassified  into  transition  regions.  To eliminate  the  above  limitation,  a modified  descriptor  tak-
eywords:
ocal entropy
uman visual perception
ransition region
hresholding

ing  both  frequency  and  degree  of  gray  level  changes  into  account  is developed.  In  addition,  in  the  light
of human  visual  perception,  a  preprocessing  step  named  image  transformation  is  proposed  to simplify
original  images  and  further  enhance  segmentation  performance.  The  proposed  algorithm  was  compared
with  LE,  local  fuzzy  entropy-based  method  (LFE)  and  four  other  thresholding  ones  on a  variety  of images
including  some  NDT  images,  and  the experimental  results  show  its  superiority.
mage segmentation

. Introduction

Image segmentation attempts to extract an object (foreground)
rom a background on the basis of some characteristics such as gray
evel, color, texture and location [1–5]. It is a critical preprocess-
ng step in image analysis and pattern recognition. Thresholding
s one of the most important and effective image segmentation
echniques, which is suitable for those images with distinctive
ray levels in object and background. Its aim is to find an appro-
riate threshold to separate both parts. Thresholding result is a
inary image where all pixels with gray levels higher than the
etermined threshold are classified as object and the rest of pix-
ls as background, or vice versa. Thresholding can serve a variety
f applications, such as biomedical image analysis [6],  charac-
er identification [7], automatic target recognition [8] and quality
nspection of materials [9].

Transition region-based thresholding is a kind of approaches
or image segmentation in recent years [10–12].  Gerbrands [10]

rst demonstrated the existence of transition region in an image.
hang and Gerbrands [11] introduced transition region into image
egmentation, and presented a transition region descriptor, i.e.,
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effective average gradient (EAG). It first calculates two image
matrices via clip transformation function, then computes effec-
tive average gradients of the two  matrices and gets two EAG(L) ∼ L
curves, finally determines two gray levels according to the peaks
of the two  curves and obtains a gray level interval. The pixels
with gray levels in the interval are classified into transition region.
EAG has some limitations: (1) gradient reflects only sudden gray
level changes, which can not depict transition region accurately,
(2) gradient-based method is much sensitive to noise, (3) in some
cases, EAG can not extract transition region for an incorrect gray
level interval as proved by Groenewald et al. [13]. In order to elim-
inate the above limitations, a descriptor, local entropy (LE) [12], is
introduced. LE represents frequent gray level changes, and better
captures nature of transition region than EAG.

LE outperforms EAG in terms of transition region description.
Nevertheless it suffers a deficiency, i.e., LE takes only frequency
of gray level changes into consideration, but neglects the degree of
these changes. Real images may  have frequent gray level changes in
some small neighborhoods of object or background, but the degrees
of these changes are so slight that they would not cause wrong judg-
ment by visual perception. In this case, the slight but frequent gray
level changes will increase local entropies of these neighborhoods
and make the pixels corresponding to the neighborhoods be erro-
neously divided into transition region. To eliminate the limitation

of LE, Zhang et al. [14] developed a modified version, namely LFE, by
treating an image as a fuzzy set and defining its local fuzzy entropy.
LFE indirectly reflects degree of gray level changes via membership
function and fuzzy entropy. Unfortunately, the indirect reflec-
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Fig. 1. Gray level changes in different local neighborhoods.

ion for the degree of changes is inadequate and instable, causing
nsatisfactory effect. In this paper, a modified local entropy-based
ethod (MLE) is presented for improving performance on transi-

ion region extraction and thresholding. A new descriptor depicting
oth frequency and degree of gray level changes is developed in
LE. Furthermore, in the light of human visual perception, an

ffective preprocessing step, namely image transformation, is also
ntroduced to simplify original images and assists transition region
xtraction and thresholding. The performance of MLE  was com-
ared with LE, LFE and four other classic thresholding methods by
esting a variety of real world images. Experimental results show
hat MLE  greatly outperforms LE and LFE in terms of transition
egion extraction and image thresholding. In addition, comparisons
gainst four classic methods [15–18] also demonstrate its superi-
rity.

The remainder of this paper is organized as follows: Sections 2
nd 3 review properties of transition region and human visual per-
eption, respectively. The proposed method is presented in Section
. The performance of the new method is tested on a variety of real
orld images and compared with LE, LFE and other thresholding
ethods in Section 5. Conclusions appear in Section 6.

. Transition region

Transition region located between object and background has
he following characteristics:

1) Region characteristic: whatever for step edge or non-step edge,
there always exists transition region near an edge [10]. Tran-
sition region near a non-step edge has certain pixel width,
while transition region around a step edge should have at least
one pixel width. In real world images, transition region near a
step edge usually has several pixel widths, owing to sampling
error.

2) Boundary characteristic: transition region is located between
object and background, and covers around the object.

3) Variation of gray levels: pixels’ gray levels in transition region
usually change frequently and intensively, bringing about
abundant information for transition region description. Gra-
dient is a good measure for sudden gray level changes, but
inapplicable in measuring frequent gray level changes. Local
entropy is suitable to represent frequent gray level changes,
but unable to reflect degree of gray level changes. For exam-
ple, there are two local neighborhoods in Fig. 1. The number
in both neighborhoods denotes gray level of pixel. From Fig. 1,
one can see that the two neighborhoods have the same chang-
ing frequency in gray level, but the degree of changes in the
right one is obviously sharper than that in the left one. Since
a slight difference in gray level is not easy to be observed by
visual perception, the right neighborhood is more likely divided
into transition region, with the left one liable to being clas-
sified into non-transition region. Because LE only considers
frequency of gray level changes, the two neighborhoods have
the same probability of being divided into transition region.

This is obviously unreasonable. Therefore, a new descriptor
considering both frequency and degree of gray level changes is
developed to depict transition region more adequately in this
paper.
ing 11 (2011) 5630–5638 5631

3. Human visual perception

Human visual perception [19] has the following characteristics.

(1) Human eye is insensitive to features present at the both
extremes of pixel intensity, whereas sensitive to distinguish-
ing features at the mid-range intensities. This suggests a focus
on mid-region of a gray scale image, i.e., around the mean, when
segmenting images.

(2) A lot of images may  have either histograms with high inten-
sity values or more structures near a certain value (usually the
mean) than that farther from the mean. A rough estimation of
such a histogram exhibits a Gaussian distribution.

Transition region is geometrically located between object and back-
ground, and composed of pixels having intermediate gray levels
between that of object and of background [20]. In the light of human
visual perception, a preprocessing step called image transformation
is suggested to simplify original images. Its basic idea is as follows:
suppose that gray levels of transition region are within a range (�1,
�2), which can be determined in an unsupervised way, a transfor-
mation is then applied so that only pixels with gray levels inside
this range will contribute to transition region. The transformation
preserves gray level changes of mixture between object and back-
ground, meanwhile weakens the changes of non-transition region.
Thus simplifies originals, which should be helpful for transition
region extraction and subsequent thresholding.

4. Transition region-based thresholding

4.1. Local entropy

Local entropy was  first used to describe transition region in [12].
Without losing generality, let I be an image with L gray levels [0,1,
. . .,  L − 1]. The number of pixels at gray level i is denoted by ni
and the total number of pixels by N = n0 + n1 + . . . + nL−1. Suppose
V = {(i,j): i = 1,2,. . .,nh; j = 1,2,. . .,nw}, where nh and nw are the height
and width of the image, respectively. Let f (i, j) be the gray level at
pixel (i, j). Following Shannon’s definition [21] of entropy, Pun [22]
defined the entropy of an image as

E = −
L−1∑
i=0

Pi log Pi (1)

where

Pi = ni

N
(2)

is the probability of gray level i appeared in the image.
Given a m × n neighborhood window centered on pixel (i, j),

˝,  its entropy, also named as local entropy of the pixel, can be
formulated as

Le(i, j) = E(˝) = −
L−1∑
k=0

Pk log Pk (3)

where

Pk = nk

m × n
(4)

is the probability of gray level k appeared in the neighborhood, and
nk the number of pixels with level k in ˝.
4.2. Modified transition region descriptor

Local entropy can depict frequency of gray level changes. How-
ever, its computational complexity is high, as the calculation of local
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ntropy involves statistical analysis for the pixels’ gray levels and
omputes each gray level’s probability appeared in a neighborhood.
urthermore, the process involves logarithm and multiplication
perations. To reduce the computational complexity, a simple form
ith similar effect, local complexity [23], is used to describe fre-

uency of gray level changes,

c(i, j) = C(˝) =
L−1∑
k=0

sgn(k) (5)

here

gn(k) =
{

1 if ∃ f (x, y) = k,
0 otherwise,

(6)

nd (x, y) is a pixel coordinate in the neighborhood ˝.
Both local entropy and local complexity consider only frequency

f gray level changes, while neglect degree of the changes. There-
ore, variance, a common statistical measure reflecting degree of
eviations between mean and individuals, is used to describe the
egree of gray level changes. For the neighborhood ˝,  its local
ariance can be formulated as

v(i, j) = �2(˝) = 1
m × n − 1

m∑
x=1

n∑
y=1

(f (x, y) − f̄ )
2

(7)

here f̄ is the gray level mean of ˝.
According to this way, when we move the neighborhood win-

ow pixel by pixel within the image from left to right and top to
ottom, each pixel’s local complexity and variance can be obtained
nd constitutes two following image matrices

c =

⎡
⎢⎣

Lc(1,  1) Lc(1,  2) ...... Lc(1,  nw)
Lc(2,  1) Lc(2,  2) ...... Lc(2,  nw)

... ... ...... ...
Lc(nh, 1) Lc(nh, 2) ...... Lc(nh, nw)

⎤
⎥⎦ (8)

v =

⎡
⎢⎣

Lv(1,  1) Lv(1,  2) ...... Lv(1,  nw)
Lv(2,  1) Lv(2,  2) ...... Lv(2,  nw)

... ... ...... ...
Lv(nh, 1) Lv(nh, 2) ...... Lv(nh, nw)

⎤
⎥⎦ (9)

To depict gray level changes of transition region adequately,
ocal complexity and local variance are synthesized as a new
escriptor. In the process, the two factors are first normalized via
he following way for avoiding one factor being neglected due to
arge differences between their values.

Lc(i, j) =
Lc(i, j) − min

∀(x,y)
Lc(x, y)

max
∀(x,y)

Lc(x, y) − min
∀(x,y)

Lc(x, y)
(10)

Lv(i, j) =
Lv(i, j) − min

∀(x,y)
Lv(x, y)

max
∀(x,y)

Lv(x, y) − min
∀(x,y)

Lv(x, y)
(11)

Both normalized factors are then synthesized as a new transition
egion descriptor

(i, j) =  ̌ × NLc(i, j) + (1 − ˇ) × NLv(i, j) (12)

here  ̌ is a weight balancing contributions of normalized local
requency and local variance. When  ̌ = 1, the new descriptor
egenerates to local complexity. And conversely, when ˇ = 0, it is
quivalent to local variance. Therefore,  ̌ should be between 0 and

. Each pixel’s S value constructs an image matrix S.

Both local complexity and local variance are related to gray
evel changes. The more frequent and intensive the changes are,
he larger their values. Accordingly, the pixels in transition region
ing 11 (2011) 5630–5638

have larger S values than those in non-transition region. This should
be used to extract transition region of an image.

4.3. Image transformation

Separation of object and background in a gray level image could
be attributed to their difference on gray level. That is, transitional
pixels’ gray levels are usually located between those of object and of
background. This coincides with the property of transition region,
i.e., sensitiveness on the features present at the mid-range of a gray
scale image, as the range usually faces more frequent and intensive
gray level changes. However, if the rough mid-range (i.e., mid-gray
level interval) is directly used to extract transition region just like
EAG [11], it is unreasonable. Here, this rough range is only utilized
to preprocess an image for simplifying it by image transformation.

In order to implement image transformation, a range (�1, �2)
should first be obtained. In the light of human visual perception,
the range may be found via image statistical characteristics. For an
image I, �1 and �2 can be determined via the following steps:

(1) Compute mean and standard deviation of the image according
to the following equations

� = 1
N

L−1∑
i=0

ini (13)

� =
(

1
N − 1

L−1∑
i=0

(i − �)2ni

)1/2

(14)

(2) Determine �1 and �2 as

�1 = � −  ̨ × � (15)

�2 = � +  ̨ × � (16)

where  ̨ is a parameter and its value can be automatically deter-
mined by optimizing the statistical criterion �S in the literature
[24]. Take material image in Fig. 2(a) as an example. The region
confined by (�1, �2) is shown in Fig. 2(b), where bright pixels are
our focuses. The figure shows that the region confined by the range
is a rough mixture between object and background.

Once �1 and �2 are determined, image transformation can be
followed immediately

ftr(i, j) =
{

�1 if f (i, j) < �1,
f (i, j) if �1 ≤ f (i, j) ≤ �2,
�2 if f (i, j) > �2.

(17)

The transformation weakens gray level changes in both object
and background simultaneously, thus simplifying the original
image. The weakening effect is favorable to transition region
extraction and image segmentation. Take transformed form of the
material image in Fig. 2(c) as an example. Corresponding gray level
range is (157, 165). From the figure, one can conclude that gray level
changes of object and background have been weakened obviously,
and the transformed image becomes much simpler than the orig-
inal. The simplifying effect would be helpful to transition region
extraction and thresholding.

4.4. Transition region extraction and thresholding

The proposed method aims to improve performance of tran-
sition region extraction and thresholding from two  aspects. One

is to simplify an image by image transformation in a preprocess-
ing step. The other is to seek better transition region descriptor.
Detailed process of transition region extraction and thresholding is
as follows:



Z. Li et al. / Applied Soft Computing 11 (2011) 5630–5638 5633

Fig. 2. Image transformation: (a) original material image, (b) the region confined by (�1, �2), (c) transformed form.

F OU, (
s sult, (

(

(

(

(

T
T

ig. 3. Segmentation of material image: (a) original, (b) ground truth image, (c) H
egmentation result, (i) transition region extracted by LFE, (j) LFE’s segmentation re

1) Find gray level range (�1, �2) by Eqs. (15) and (16), and imple-
ment image transformation by Eq. (17).

2) Calculate each pixel’s S value in the transformed image by Eq.
(12), and construct an image matrix S.

3) Obtain the following threshold ST for transition region extrac-
tion.

ST = � × Smax (18)

where

Smax = max∀(i,j)S(i, j) (19)

and � is a coefficient between 0 and 1.

4) Extract transition region via the following way

TR(i, j) =
{

1 if S(i, j) ≥ ST ,
0 otherwise.

(20)

able 1
hresholds, numbers of misclassified pixels, ME  values and running times obtained by ap

Images Thresholding methods

HOU KAPUR TSALLIS 

Material
Threshold 157 119 143 

Misclassified pixels 5343 22021 12328 

ME  0.081528 0.33601 0.18811 

Running time (s) 2.86 0.062 1.125 

Cell
Threshold 149 172 171 

Misclassified pixels 8752 7276 7375 

ME 0.13354 0.11102 0.11253 

Running time (s) 4.047 0.031 2 

PCB
Threshold 112 158 161 

Misclassified pixels 2029 13852 14426 

ME 0.03096 0.21136 0.22012 

Running time (s) 2.782 0.031 0.047 
d) KAPUR, (e) TSALLIS, (f) PARZEN, (g) transition region extracted by LE, (h) LE’s
k) transition region extracted by MLE  and (l) MLE’s segmentation result.

(5) Final segmentation threshold T* is taken as gray level mean of
transition region [11,12],  i.e.,

T∗ =
∑

i

∑
jTR(i, j) × f (i, j)∑
i

∑
jTR(i, j)

(21)

(6) Binarize the image by T*.

5. Experimental results

To evaluate the performance of the new approach (MLE), a vari-
ety of real world images including some nondestructive testing
(NDT) images were chosen as testing samples. The results were
compared with those obtained by HOU [16], KAPUR [17], TSALLIS
[15], PARZEN [18], LE [12] and LFE [14]. Quality of thresholding

is quantitatively evaluated via misclassification error (ME) [25],
which regards image segmentation as a pixel classification pro-
cess. ME  reflects the percentage of background pixels incorrectly
classified into foreground, and conversely, foreground pixels erro-

plying various methods to the NDT images.

PARZEN LE LFE MLE

120 147 146 161
21640 10377 10905 3607
0.3302 0.15834 0.1664 0.055038
16.578 14.703 21.516 5.391

171 183 229 224
7375 5513 5864 3357
0.11253 0.084122 0.089478 0.051224
86.156 15.172 20.484 5.188

161 137 112 89
14426 6828 2029 1224
0.22012 0.10419 0.03096 0.018677
30.469 13.797 20.297 5.329
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Fig. 4. Segmentation of cell image: (a) original, (b) ground truth image, (c) HOU, (d) KAPUR, (e) TSALLIS, (f) PARZEN, (g) transition region extracted by LE, (h) LE’s segmentation
result,  (i) transition region extracted by LFE, (j) LFE’s segmentation result, (k) transition region extracted by MLE  and (l) MLE’s segmentation result.
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ig. 5. Segmentation of PCB image: (a) original, (b) ground truth image, (c) HOU, (d) K
esult,  (i) transition region extracted by LFE, (j) LFE’s segmentation result, (k) transi

eously assigned to background. For a two-class segmentation, ME
an be simply formulated as

E  = 1 −
∣∣BO ∩ BT

∣∣+ ∣∣FO ∩ FT

∣∣∣∣BO

∣∣+ ∣∣FO

∣∣ (22)

here BO and FO are the background and foreground of the ground
ruth image, BT and FT the background and foreground pixels in
he thresholded image, and |·| cardinality of a set. The value of ME
aries between 0 for a perfectly classified image to 1 for a totally
rroneously classified one. A lower value of ME  means better qual-
ty. In the proposed method, the neighborhood size is 3 × 3,  ̌ and

 are 0.3 and 0.1, respectively. For LE and LFE, the neighborhood
izes are 7 × 7 and 11 × 11, the parameter about entropy threshold

s 0.85 and 0.6, respectively. All experiments are performed on a
otebook PC with 2.13G Intel Core 2 Duo CPU and 3G RAM. All the

mages used in the experiments are of 256 × 256 pixels and 8-bit
i.e., 256 gray levels).

able 2
hresholds, numbers of misclassified pixels and ME  values obtained by applying various 

Images Thresholding methods

HOU KAPUR TSALLIS 

Potatoes
Threshold 143 71 64 

Misclassified pixels 1805 936 1823 

ME 0.027542 0.014282 0.027817 

Running time (s) 2.985 0.046 0.39 

Block
Threshold 192 138 17 

Misclassified pixels 19431 16794 2589 

ME 0.29649 0.25626 0.039505 

Running time (s) 2.734 0.032 0.422 
, (e) TSALLIS, (f) PARZEN, (g) transition region extracted by LE, (h) LE’s segmentation
egion extracted by MLE  and (l) MLE’s segmentation result.

5.1. Experiments on NDT images

Three NDT images were first chosen and compared. They are
a light microscopy form of a material structure, a cell image and a
PCB. NDT means to detect an object and quantify its possible defects
without harmful effects on it by special equipments and methods.
It is used in a broad variety of applications, such as aeronautics and
astronautics, nuclear industry, chemistry and civil constructions.

The results in terms of thresholds, numbers of misclassified pix-
els, ME  values and running times obtained by applying various
methods to the images are listed in Table 1. The table shows that our
segmentation results have less misclassified pixels and lower ME
values, implying better performance. This observation can further
be judged by comparing visual segmentation results in Figs. 3–5.

From the figures, one can conclude that MLE extracts transition
regions more accurately and generates results closest to the ideal
ones. By comparison, LE and LFE fail to accurately extract transition
regions of the images and get bad results. Other methods are also

methods to the simple images.

PARZEN LE LFE MLE

65 135 122 106
1593 1475 951 341
0.024307 0.022507 0.014511 0.0052032
17.938 13.875 19.953 5.266

128 85 47 60
13910 3814 660 46
0.21225 0.058197 0.010071 0.0007019
58.719 12.578 19.25 5.203
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Fig. 6. Segmentation of potatoes image: (a) original, (b) ground truth image, (c) HOU, (d) KAPUR, (e) TSALLIS, (f) PARZEN, (g) transition region extracted by LE, (h) LE’s
segmentation result, (i) transition region extracted by LFE, (j) LFE’s segmentation result, (k) transition region extracted by MLE  and (l) MLE’s segmentation result.

Fig. 7. Segmentation of block image: (a) original, (b) ground truth image, (c) HOU, (d) KAPUR, (e) TSALLIS, (f) PARZEN, (g) transition region extracted by LE, (h) LE’s segmentation
result,  (i) transition region extracted by LFE, (j) LFE’s segmentation result, (k) transition region extracted by MLE  and (l) MLE’s segmentation result.

Fig. 8. Segmentation of lena image: (a) original, (b) histogram, (c) HOU, (d) KAPUR, (e) TSALLIS, (f) PARZEN, (g) transition region extracted by LE, (h) LE’s segmentation result,
(i)  transition region extracted by LFE, (j) LFE’s segmentation result, (k) transition region extracted by MLE  and (l) MLE’s segmentation result.

Fig. 9. Segmentation of woman  image: (a) original, (b) histogram, (c) HOU, (d) KAPUR, (e) TSALLIS, (f) PARZEN, (g) transition region extracted by LE, (h) LE’s segmentation
result, (i) transition region extracted by LFE, (j) LFE’s segmentation result, (k) transition region extracted by MLE  and (l) MLE’s segmentation result.
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Fig. 10. Segmentation of flower image: (a) original, (b) histogram, (c) HOU, (d) KAPUR, (e) TSALLIS, (f) PARZEN, (g) transition region extracted by LE, (h) LE’s segmentation
result,  (i) transition region extracted by LFE, (j) LFE’s segmentation result, (k) transition region extracted by MLE  and (l) MLE’s segmentation result.
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ig. 11. Segmentation of text image: (a) original, (b) histogram, (c) HOU, (d) KAPU
esult,  (i) transition region extracted by LFE, (j) LFE’s segmentation result, (k) transi

nable to obtain satisfactory results. In addition, we can observe
hat MLE  is obviously faster than LE and LFE, and its running time
re about half of LE’s and one third of LFE’s, respectively. The main
eason is that its neighborhood size is 3 × 3, while neighborhood
izes of LE and LFE are 7 × 7 and 11 × 11. When calculating each
ixel’s local characteristic under three transition region descrip-
ors, MLE, LE and LFE involves 9, 49 and 121 pixels, respectively.
his saves a lot of time for MLE. Among three transition region-
ased approaches, LFE is slowest, owing to its largest neighborhood
ize and extra calculation for each pixel’s membership.

.2. Experiments on real world images

In this section, 6 images were selected for test purpose. They fall
nto two groups. One group is for simple images, and the other for

omplex ones.

Quantitative comparisons of segmentation results for the first
roup are listed in Table 2. It shows that MLE  achieves better results
ith less misclassified pixels and lower ME  values. Visual thresh-

able 3
oise density of salt and pepper noise (d) and mean misclassification error (MME)  of vari

PCB image Thresholding methods

HOU KAPUR TSALLIS 

d MME
0.1 0.085527 0.053619 0.17035 

0.2 0.30163 0.11896 0.22994 

0.3  0.32418 0.18343 0.26424 

0.4 0.34647 0.23878 0.29865 

0.5  0.36904 0.29069 0.3339 
) TSALLIS, (f) PARZEN, (g) transition region extracted by LE, (h) LE’s segmentation
egion extracted by MLE  and (l) MLE’s segmentation result.

olding results are displayed in Figs. 6 and 7. From the figures, one
can observe that MLE  successfully extracts transition regions and
gets satisfying results. LE misclassifies partial object regions into
transition regions. The reason is that there exist some object regions
with frequent but slight gray level changes in the images, which
are easy to be erroneously assigned to transition regions by LE as
explained in Section 2. In addition, LFE also wrongly divides some
non-transition regions in foreground or background into transition
regions, resulting in unsatisfactory segmentation results.

Experimental results on the complex images are shown in
Figs. 8–11. The first three images have complex structures and con-
tain multiple transition regions of different gray levels, which make
transition region extraction more difficult. The last image is a doc-
ument with low contrast and uneven illumination. Since they are
complex and have not specific objects, quantitative measurement is

inapplicable to them. Quality of segmentation results is only judged
by visual perception. Figs. 8–11 indicate that MLE  extracts transi-
tion regions more accurately and obtains better results than LE and
LFE. Our method also outperforms other four methods.

ous methods.

PARZEN LE LFE MLE

0.10278 0.13668 0.20253 0.054379
0.15903 0.17569 0.18331 0.10108
0.21077 0.21706 0.19967 0.15592
0.26119 0.25383 0.23326 0.20515
0.30924 0.29095 0.27111 0.25956
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Table  4
Noise density of Gaussian noise (�2) and mean misclassification error (MME) of various methods.

PCB image Thresholding methods

HOU KAPUR TSALLIS PARZEN LE LFE MLE

�2 MME
0.1 0.077153 0.059793 0.10407 0.060289 0.098727 0.10928 0.14405
0.2  0.078049 0.088467 0.33295 0.11793 0.13671 0.064482 0.14864

5

n
s
i
i
G
u
f
c
T
n

5

n
t
n
b
s
l
o
b
w
t
w
h
t
l
e
n
i
p
m
M

5

s
L
c
m
(
l
t
T
n
O
m
T
l

two methods. As compared with LE and LFE, MLE  needs extra time
O (L), where L < <N, to perform image transformation. However it
is worth mentioning that neighborhood size of our method is only

Table 5
Mean misclassification error (MME)  and average MME  obtained by applying the
proposed method to the first five images (i.e., material, cell, PCB, potatoes and block)
under different combinations of ˇ, � and neighborhood size.

�=0.1 0.2 0.3 0.4 0.5

Size = 3
ˇ = 0.1 0.0596 0.0815 0.1105 0.1297 0.1356
0.2  0.0367 0.0649 0.0866 0.1158 0.1339
0.3  0.0253 0.0554 0.0662 0.0929 0.1225
0.4  0.0262 0.0367 0.0569 0.0696 0.0984
0.5 0.0262 0.0367 0.0471 0.0635 0.0703
Average MME  0.0740
Size = 5
ˇ = 0.1 0.0607 0.0805 0.1037 0.1264 0.1347
0.2  0.0549 0.0666 0.0874 0.1136 0.1306
0.3  0.0428 0.0621 0.0719 0.0950 0.1204
0.4  0.0311 0.0567 0.0667 0.0772 0.1032
0.5 0.0264 0.0504 0.0625 0.0703 0.0838
Average MME  0.0792
Size = 7
ˇ = 0.1 0.0583 0.0796 0.1027 0.1198 0.1355
0.2  0.0548 0.0687 0.0901 0.1142 0.1316
0.3  0.0495 0.0628 0.0771 0.1006 0.1233
0.4  0.0424 0.0595 0.0691 0.0874 0.1122
0.5 0.0358 0.0546 0.0641 0.0770 0.0976
Average MME  0.0827
Size = 9
ˇ = 0.1 0.0533 0.0766 0.0992 0.1189 0.1345
0.2  0.0518 0.0675 0.0897 0.1114 0.1321
0.3  0.0485 0.0598 0.0794 0.1027 0.1237
0.4  0.0433 0.0569 0.0708 0.0908 0.1166
0.5  0.0399 0.0544 0.0644 0.0821 0.1050
Average MME  0.0829
Size = 11
ˇ = 0.1 0.0515 0.0745 0.0980 0.1188 0.1360
0.2  0.0476 0.0653 0.0893 0.1116 0.1308
0.3  0.0448 0.0562 0.0776 0.1019 0.1246
0.4  0.0437 0.0532 0.0694 0.0922 0.1154
0.5  0.0408 0.0498 0.0622 0.0812 0.1041
Average MME  0.0816
Size = 13
ˇ = 0.1 0.0494 0.0707 0.0949 0.1158 0.1350
0.2  0.0462 0.0612 0.0854 0.1088 0.1317
0.3  0.0429 0.0546 0.0766 0.0995 0.1235
0.4  0.0415 0.0512 0.0676 0.0896 0.1140
0.5  0.0394 0.0477 0.0609 0.0804 0.1032
Average MME  0.0797
Size = 13
ˇ = 0.1 0.0479 0.0672 0.0918 0.1137 0.1348
0.2  0.0449 0.0608 0.0822 0.1064 0.1307
0.3 0.069206 0.1951 0.41073 

0.4 0.058754 0.46165 0.41521 

0.5  0.07206 0.58844 0.4154 

.3. Experiments on noisy images

The performance of various methods in the presence of
oise is studied in this section. Salt & pepper noise and Gaus-
ian noise with certain noise density are considered. The PCB
mage is used to assess the performance of various approaches
n the presence of degeneration. Since salt & pepper noise or
aussian noise added to an image is random, we run the sim-
lation 10 times to get mean misclassification error (MME)
or each noise density. Quantitative results in Table 3 indi-
ate that MLE  obtains best results under salt and pepper noise.
able 4 shows that MLE  has intermediate effect under Gaussian
oise.

.4. Parameter selection

In the proposed method, there are four parameters: ˛, ˇ, � and
eighborhood size. However,  ̨ can be automatically determined by
he statistical criterion in the literature [24]. Hence, only ˇ, � and
eighborhood size are left uncertain. The parameter  ̌ is used to
alance contributions of local complexity and local variance in tran-
ition region description. Higher  ̌ corresponds to larger weight of
ocal complexity. Another parameter � aims to control the number
f pixels in transition region. The bigger the � is, the less the num-
er. Image transformation is an independent preprocessing step,
hich is irrespective of the latter three parameters. To discuss the

hree parameters, a series of experiments on the first five images
ithout image transformation under their different combinations
ave been carried out. Table 5 lists experimental results. From the
able, one can observe that: neighborhood size of 3 × 3 results in
owest average MME  (mean misclassification error) value. How-
ver, maximum difference of average MME  values under different
eighborhood sizes is only 0.0089, which shows that our method

s little affected by selection of parameters. In order to reduce com-
utational complexity, a 3 × 3 is chosen as neighborhood size in our
ethod. Accordingly,  ̌ and � are 0.3 and 0.1, as there is minimum
ME  in this case.

.5. Computational complexity

Theoretical analysis of MLE’s computational complexity is pre-
ented in this section. For segmenting an image of N pixels and

 gray levels with a neighborhood size n × n, the first step is to
ompute the mean and standard deviation of the image for imple-
enting image transformation, which has a time complexity of O

L). The next step is to calculate each pixel’s local complexity and
ocal variance in the transformed image and construct their respec-
ive image matrix, which has complexity of O (n2N), where n < <N.
he third step is to normalize the above two matrices and form a
ew matrix under the synthesized descriptor, whose complexity is
 (N). The next step is to find a threshold for the synthesized image
atrix and extract transition region, which has complexity O (N).

he last step is to determine the segmentation threshold as gray
evel mean of transition region, and corresponding complexity is O
0.36024 0.18693 0.069948 0.15976
0.54954 0.26626 0.13371 0.18291
0.59643 0.35462 0.23571 0.22391

(Nt), where Nt is the total number of the pixels in transition region
(Nt < N). Thus the total computational complexity of MLE  is O (N).
MLE, LE and LFE have the same computational complexity O (N). But
practical experimental results show that MLE  is faster than other
0.3 0.0414 0.0544 0.0731 0.0957 0.1203
0.4  0.0391 0.0498 0.0647 0.0864 0.1117
0.5 0.0375 0.0463 0.0581 0.0780 0.0989
Average MME  0.0774
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 × 3, while those of LE and LFE are 7 × 7 and 11 × 11, respectively.
herefore, their time complexities in calculating local characteristic
alue are O (9N), O (49N) and O (121N), respectively. The differences
re O (40N) and O (112N), which are larger than O (L). Thus MLE  can
un faster than LE and LFE, and its running time is almost half of LE’s
nd one third of LFE’s.

. Conclusions

In this paper, a modified local entropy-based transition region
xtraction and thresholding method has been presented. By ana-
yzing the properties of transition region, we find that local entropy
ould not completely depict transition region. This is because
ocal entropy only considers frequency of gray level changes, but
eglects the degree of these changes. This causes those non-
ransition regions with frequent but slight gray level changes to
e misclassified into transition regions. In order to eliminate this

imitation, a new transition region descriptor integrating local
omplexity and local variance is proposed to depict frequency
nd degree of gray level changes adequately. In addition, in the
ight of human visual perception, a preprocessing step named
mage transformation is introduced to simplify original images.
his transformation retains image details within a gray level range
etermined in an unsupervised way while excluding the contri-
ution of transitional pixels outside this range. In other words,
his transformation preserves gray level changes in the mixture
etween object and background, and weakens gray level changes
f non-transition region, simplifying original images. Thus, it is
elpful for transition region extraction and subsequent image seg-
entation. The proposed method can extract transition region
ore accurately, which naturally leads to a good segmentation

esult. Furthermore, the proposed method runs faster than clas-
ic local entropy-based method and local fuzzy entropy-based
pproach for needing smaller neighborhood window in local char-
cteristic calculation. Experimental results on a variety of images
emonstrate the effectiveness and efficiency of the new method.
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